Bungee – Sprung eines Eis

Pavel Saviankou

Katrin Fortak

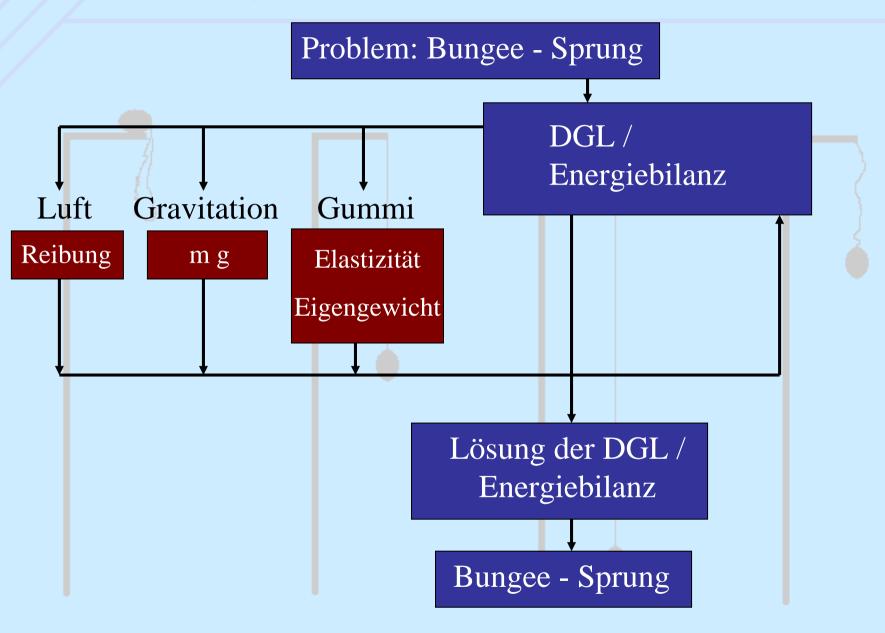
Simone Menzel

Lukas Arnold

Ablauf des Projektes

- Planung des Versuches
- Abschätzungen
- Messungen mit dem Fernrohr
- Der Umstieg auf MPLI
- Lösungsansätze
- Lösung der Energiebilanz
- numerische Lösung der DGL
- Fehler
- Das Experiment
- Fazit

Struktur des Versuches



Abschätzung

<u>Luft</u>

Reibung

Reibung nach Stokes:

$$F_{\rm s} = 6\pi\eta vr$$

Freier Fall aus 7m:

$$v = \sqrt{2gl} = 11.7 \frac{m}{s}$$

$$\Rightarrow F_s = 8.02 \cdot 10^{-5} N$$

$$\Rightarrow F_s = 8.02 \cdot 10^{-5} N$$

vernachlässigbar

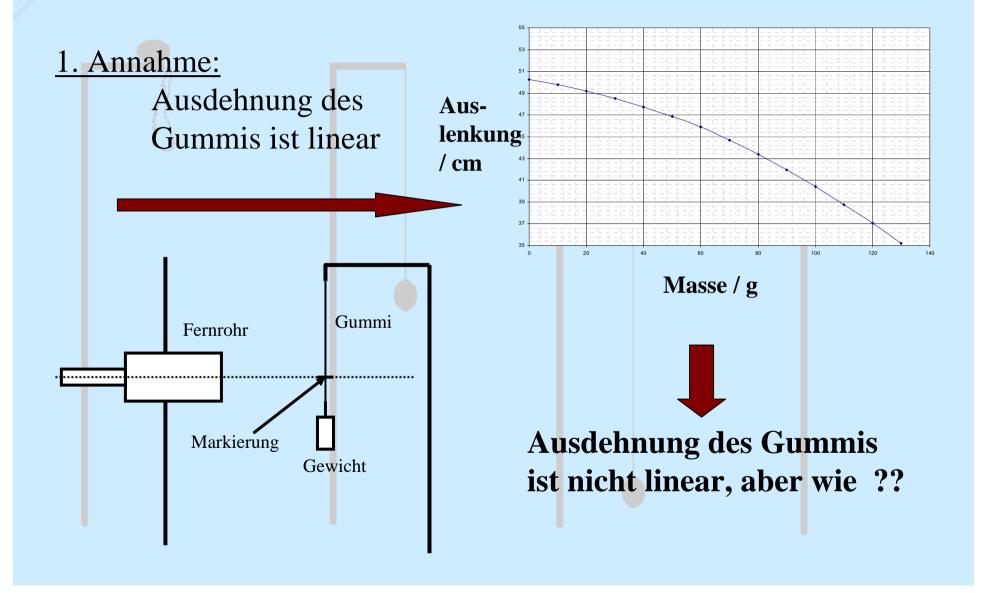
Gummi

Eigengewicht

Masse des Eis ist viel größer als die Masse des **Gummis**

vernachlässigbar

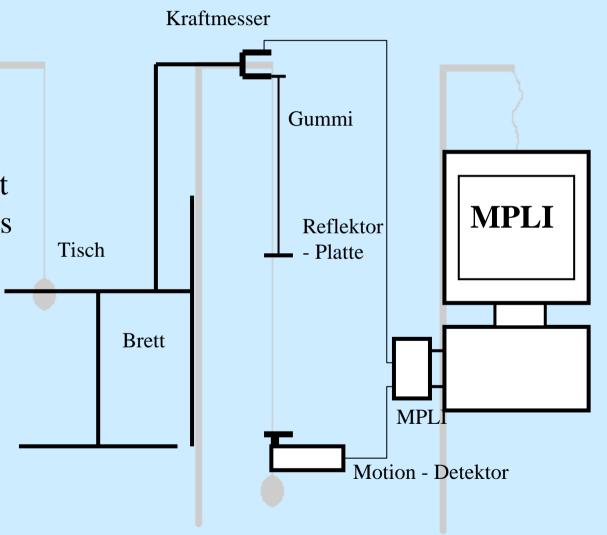
Messungen mit dem Fernrohr



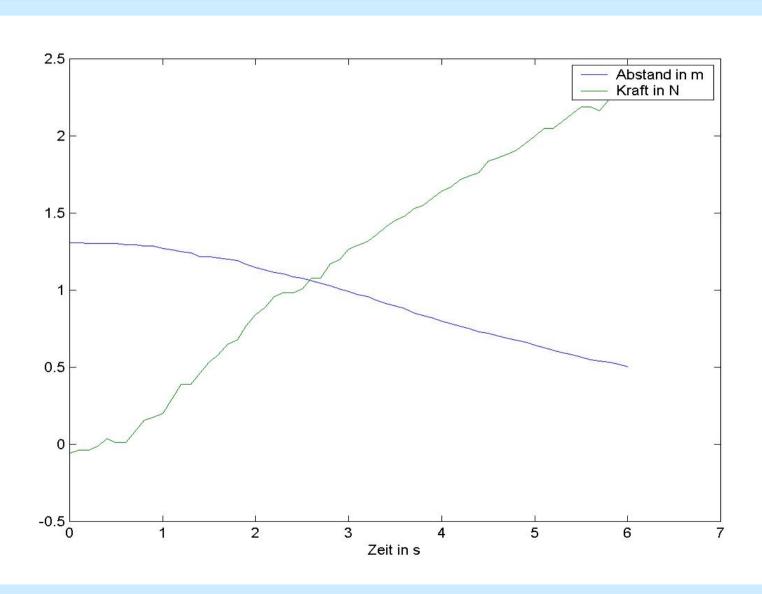
Der Umstieg auf MPLI

Gründe

- höhere Genauigkeit
- das Gummi wird nicht während des Ablesens eines einzelnen Messwertes schon gedehnt
- große Anzahl von Messpunkten



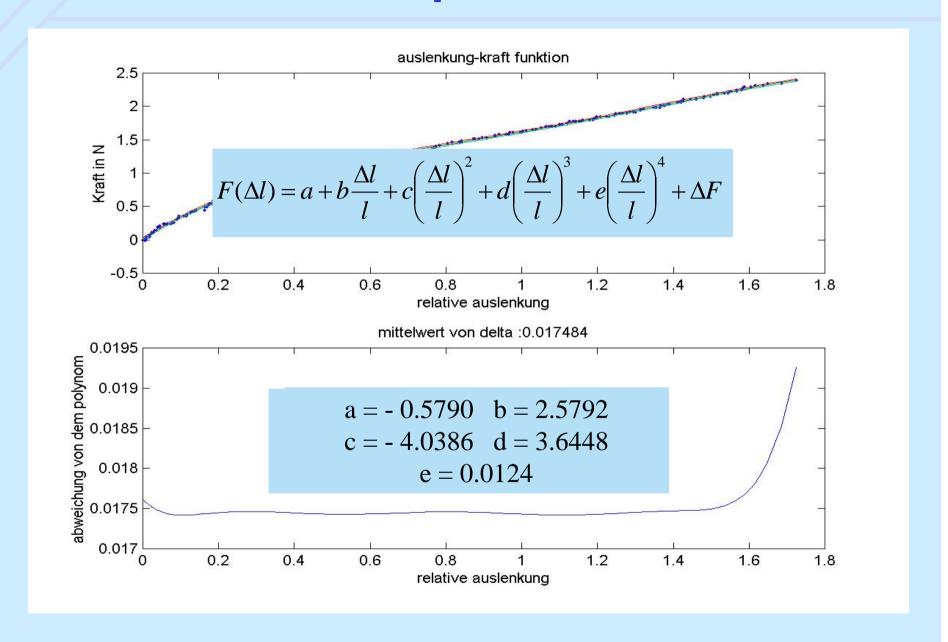
Messreihen



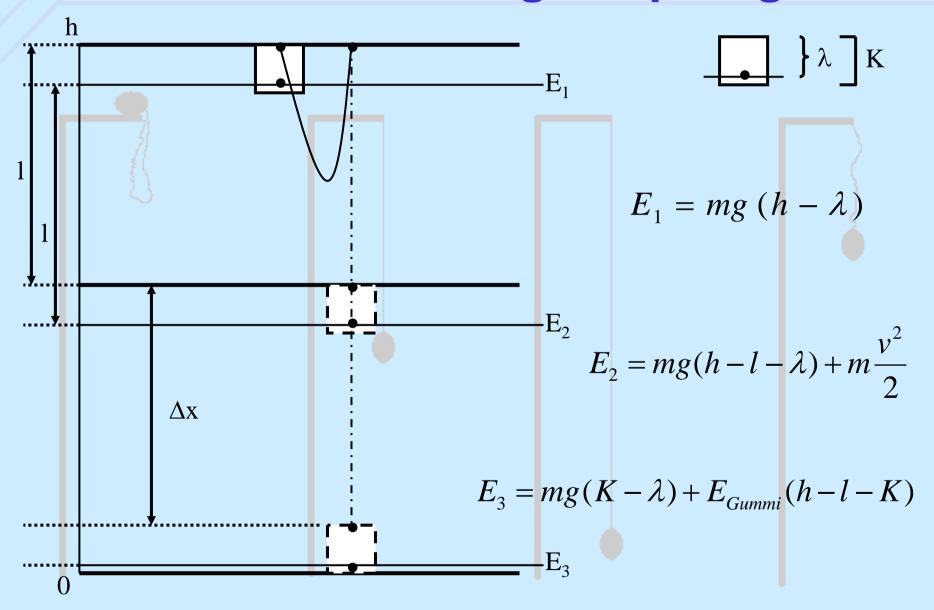
Bearbeitung der Daten

- Auswählen der Daten
 - \Rightarrow 1. ziehen
- Skalieren von Kraft und Auslenkung
- Interpolieren der Kurve durch Polynom 4. Ordnung nach dem minimalen mittleren quadratischen Fehler
- Fehlerband anstelle von einer einzelnen Kurve Das Band gibt einen Bereich an, in dem die Kraft zu erwarten sein wird.

Interpolation



Modell des Bungee-Sprungs



Lösungsansätze

$$E_1 = E_3$$

Energiebilanz

$$mgh = mgK + E_{Gummi} (h - l - K)$$

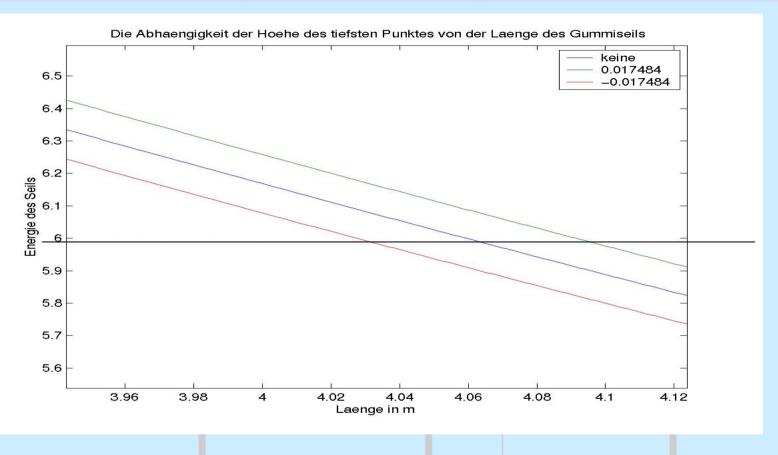
$$E_{G}(\Delta l) = -\int_{0}^{\Delta l} F(\Delta x) d\Delta x = -a\Delta l - b\frac{\Delta l^{2}}{2l} - c\frac{\Delta l^{3}}{3l^{2}} - d\frac{\Delta l^{4}}{4l^{3}} - e\frac{\Delta l^{5}}{5l^{4}} + C$$

Differentialgleichung

$$m\ddot{x} = -mg + P\left(\frac{h - l - \lambda - x}{l}\right)$$

$$\ddot{x} = \left\{ -g + \frac{1}{m} \left[a + b \left(\frac{h - l - \lambda - x}{l} \right) + \dots + e \left(\frac{h - l - \lambda - x}{l} \right)^{4} \right], \forall x \le h - l - K \right\}$$

Lösung der Energiebilanz



$$E_3(l) = mg(K + 0.05m) + E_{Gummi}(h - l - K + 0.05m)$$

 $E_1(l) = mg(h - \lambda)$

$$E_1(l) = mg(h - \lambda)$$

Numerische Lösung der Differentialgleichung

- iterative Verfahren mit Schrittweite h
- nur Lösung von Gleichungen erster Ordnung (Systeme)

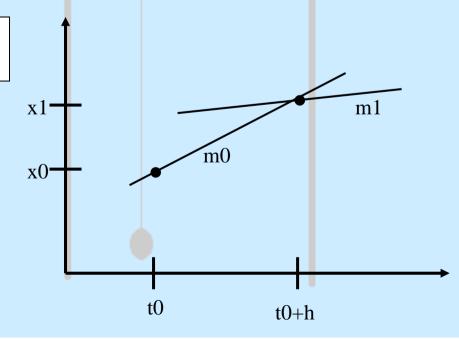
$$\ddot{x} = f(x, \dot{x}, t) \rightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} f_1(x, \dot{x}, t) \\ f_2(x, \dot{x}, t) \end{pmatrix} \qquad \text{mit} \quad \begin{cases} f_1 = \dot{x} \\ f_2 = \dot{x} \end{cases}$$

Euler - Verfahren

$$\dot{x} = f(x,t)$$

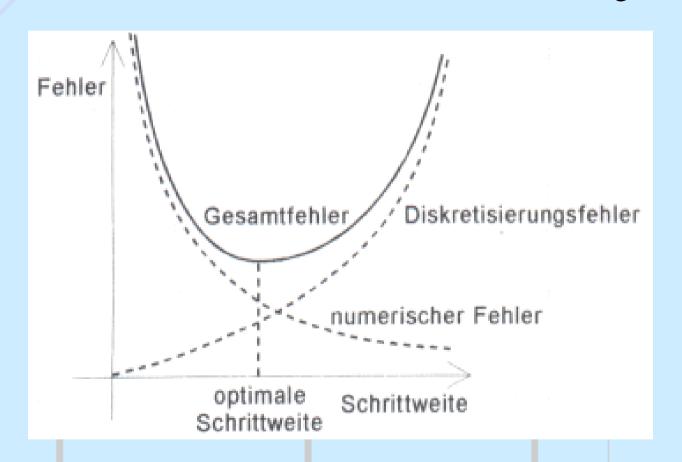
$$x_{n+1} = x_n + h \cdot f(x,t) + O(h^2)$$

- hoher Rechenaufwand
- ungenau



Das Runge – Kutta – Verfahren

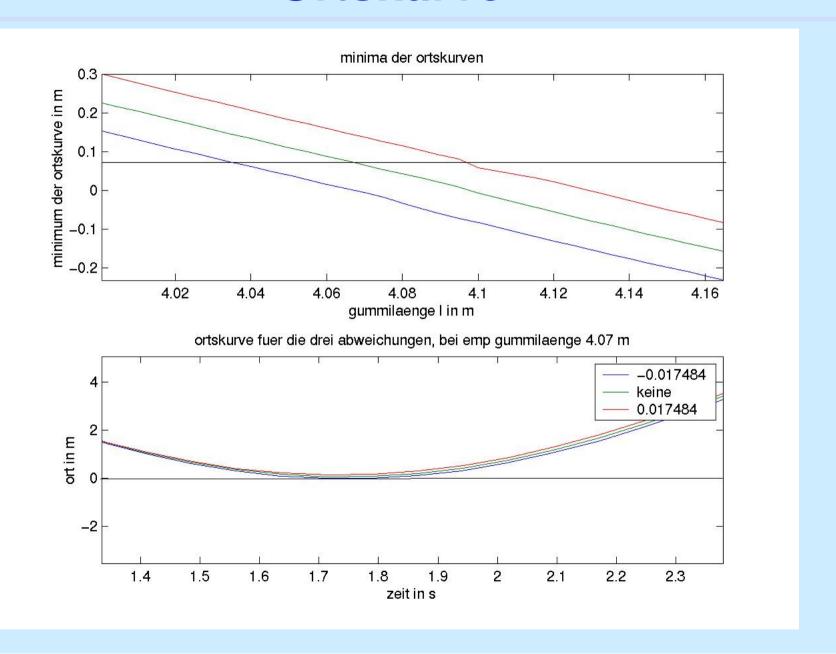
Verfahren 4. Ordnung



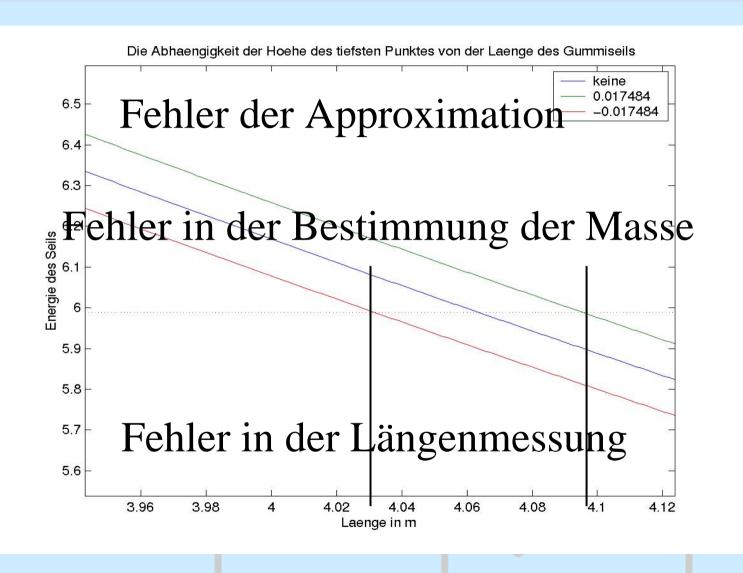
$$\dot{x} = f(x, t)$$

$$x_{n+1} = x_n + h \cdot \left(\frac{m0}{6} + \frac{m1}{3} + \frac{m2}{3} + \frac{m3}{6}\right) + O(h^5)$$

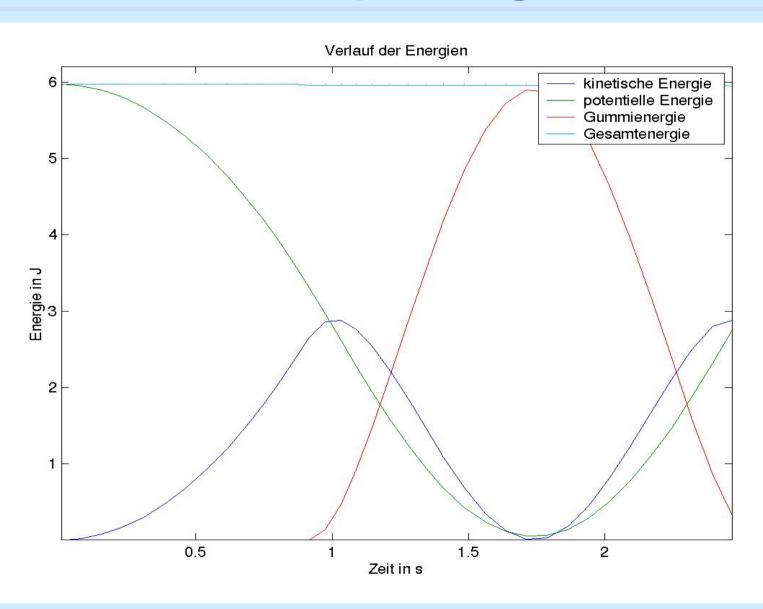
Ortskurve



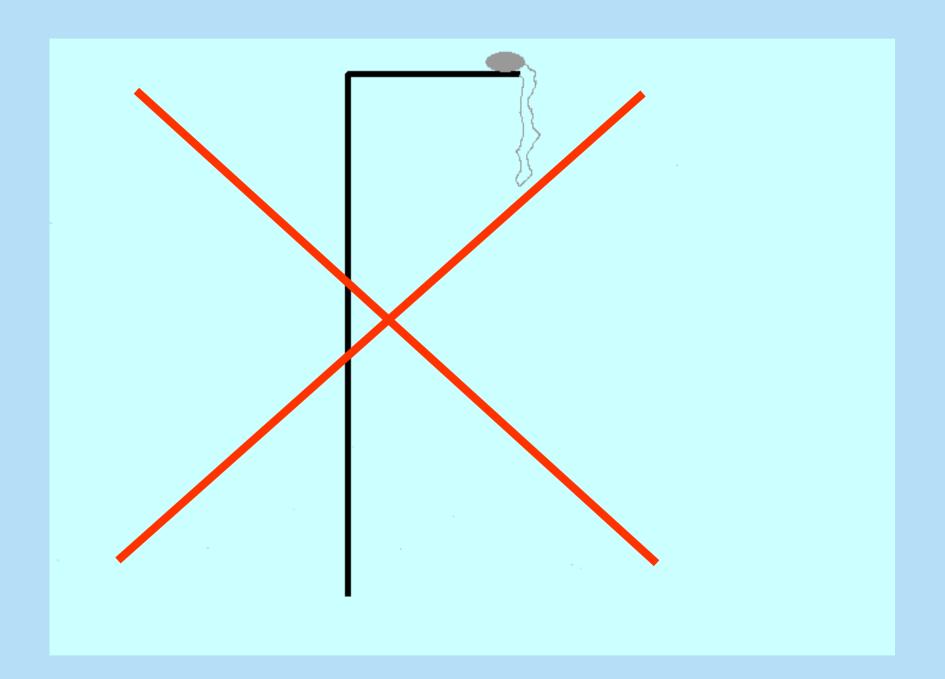
Fehlerabschätzung



Überprüfung



Das Experiment



Fazit

Was haben wir gelernt?

- Teamarbeit
- Analyse von Problemen und Aufstellen von Hypothesen
- Ausarbeiten von Lösungswegen
- Irrwege

Genauere Näherung war für uns in der gegebenen Zeit nicht möglich

Das

