

# Haft- und Gleitreibung

Moritz Orlowski, Rajees Uthayasegaram, Malina Reitemeyer

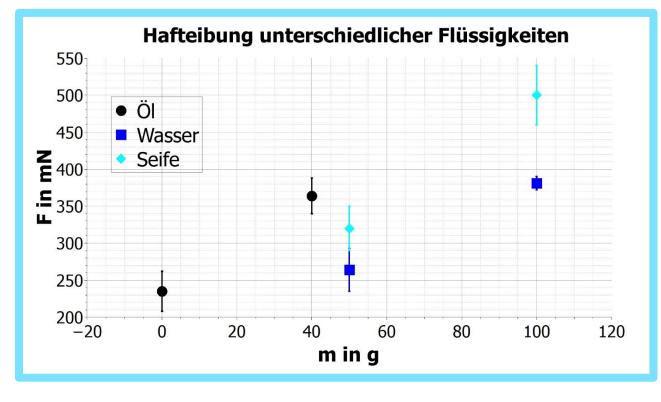
Betreuer: Simon Mundinar

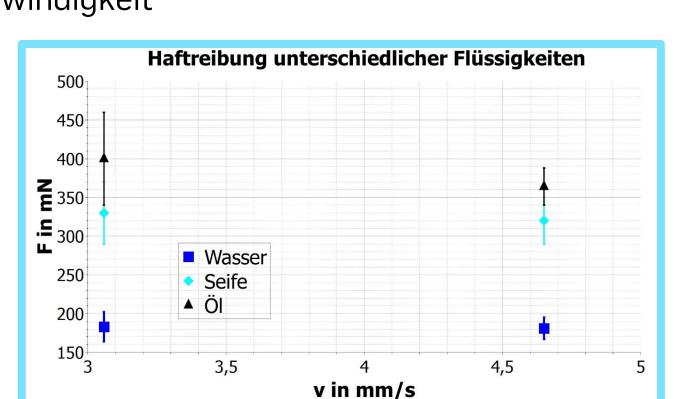
## Motivation

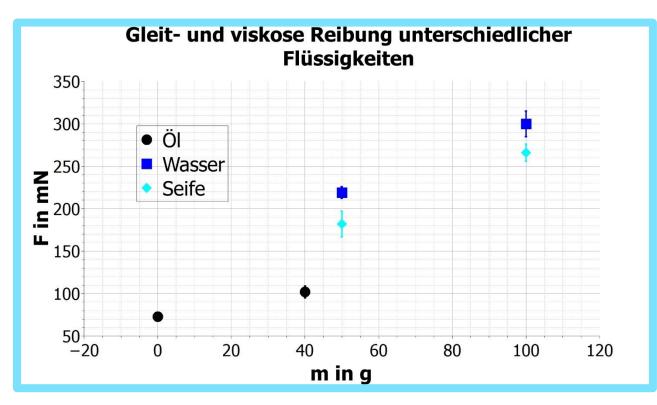
Versuch zur Untersuchung von Haft- und Gleitreibung verschiedener Flüssigkeiten Ziel ist es **Haft- und Gleitreibungskoeffizienten verschiedener Flüssigkeiten für verschiedene Schichtdicken und Geschwindigkeiten zu bestimmen** 

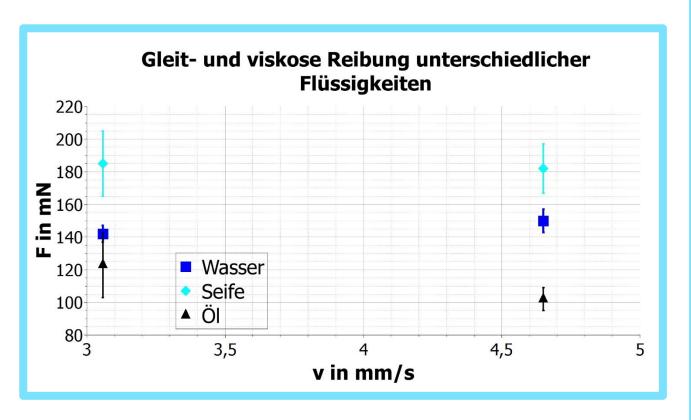
## Grundlagen

Reibung bei Bewegung eines Körpers auf einer Flüssigkeitsschicht


**Haftreibung**  $F_H = \mu_H \cdot mg$  Haftreibungskoeffizient  $\mu_H$  **Gleitreibung**  $F_G = \mu_G \cdot mg$  Gleitreibungskoeffizient  $\mu_G$  unabhängig von Geschwindigkeit und Auflagefläche


Viskose Reibung  $F_{vis} \propto v^{\beta}$ 


| β   | $F_{vis}$            |
|-----|----------------------|
| 0,5 | Schmiermittelreibung |
| 1   | Stokes-Reibung       |
| 2   | Strömungswiderstand  |


# Ergebnisse

Hier einige exemplarische Daten für die Haft- und Gleitreibung bei unterschiedlicher Masse und Geschwindigkeit









| Fluid           | $\mu_H$           | $\mu_G$         |
|-----------------|-------------------|-----------------|
| Wasser          | $0,250 \pm 0,009$ | 0,16 ± 0,03     |
| Seifenlauge     | $0,304 \pm 0,007$ | $0.17 \pm 0.03$ |
| Öl              | $0,329 \pm 0,018$ | 0,096 ± 0,027   |
| PVC (Literatur) | 0,40,5            | 0,23            |

 $\mu_H$  und  $\mu_G$  werden durch Fluide verringert

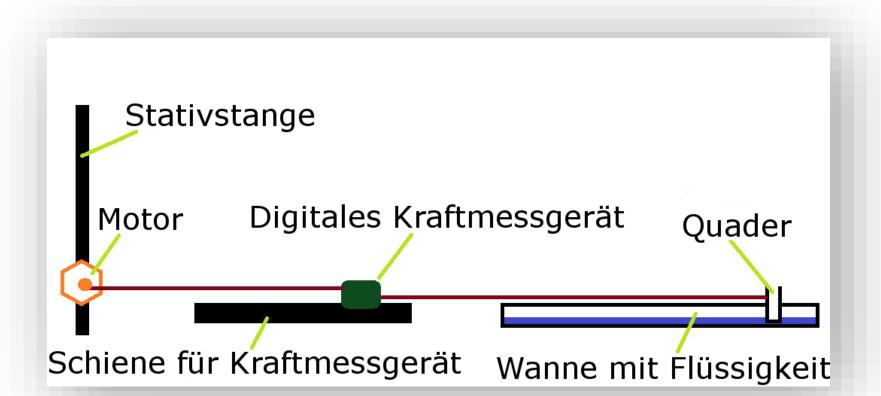
Berechnung von  $\gamma$  durch die Geschwindigkeiten ergibt:

| $oldsymbol{eta}$ | γ             |
|------------------|---------------|
| 0,5              | 1,233 ± 0,012 |
| 1                | 1,521± 0,030  |
| 2                | 2,31 ± 0,09   |

Berechnung durch  $F_{v_i}$  und  $\mu_G$  ergibt:

$$\gamma=2,0\pm0,9$$

ightarrow kein belastbares Ergebnis wegen zu großem Fehler Bestwert lässt auf  $\beta \in \{1,2\}$  schließen


Direkte Berechnung von  $\beta$  stützt diese Vermutung:

$$\beta = 1, 6 \pm 2, 5$$

Messdaten ergeben Abhängigkeit für F von Stirnfläche A  $\rightarrow$  Argument für Strömungswiderstand (R = 2) für den gilt  $F = \alpha A$ 

ightarrow Argument für Strömungswiderstand (eta=2) für den gilt  $F_{vis} \propto A$ 

# Aufbau, Durchführung



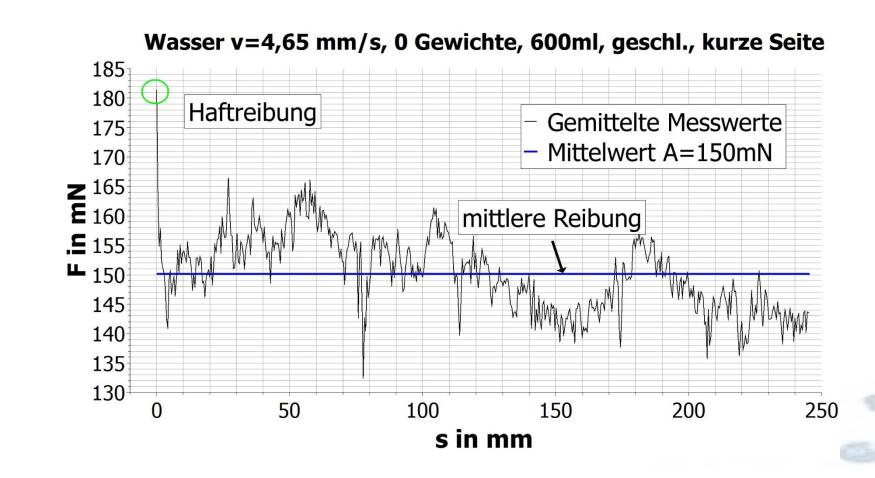
- Quader in gefüllte Wanne setzen
- Messprogramm und Motor starten

Es muss darauf geachtet werden, dass

- die Flüssigkeit zu Beginn gleichmäßig verteilt ist
- der Quader gerade und nicht schief gezogen wird
- keine Unebenheiten in der Wanne vorhanden sind und diese waagerecht zum Boden steht

# Auswertung

Berechnung von  $\mu_H$  durch Maximum zu Beginn der Messung  $\mu_H = \frac{F_{H,max}}{m \cdot g}$ 


Gesamtreibung bei v > 0:  $F = F_G + F_{vis}$ 

Da  $F_v$  unabhängig von Masse m  $\rightarrow$  Bestimmung von  $\mu_H$  durch Messung der Gesamtreibung  $F_{m_i}$  mit verschiedenen Massen:

$$\mu_G = \frac{F_{m_2} - F_{m_1}}{g \cdot (m_2 - m_1)}$$

Da Gleitreibung  $F_G$  unabhängig von  $v \to Bestimmung von <math>\beta$  durch Messung der Gesamtreibung  $F_{v_i}$  bei verschiedenen Geschwindigkeiten:

$$\beta = \log \frac{(\frac{F_{v_2} - \mu_G \cdot m \cdot g}{F_{v_1} - \mu_G \cdot m \cdot g})}{\log \frac{v_2}{v_1}} \qquad \text{oder} \qquad \frac{F_{v_2} - \mu_G \cdot m \cdot g}{F_{v_1} - \mu_G \cdot m \cdot g} = (\frac{v_2}{v_1})^{\beta} = : \gamma$$



### Fazit

Alle Koeffizienten konnten erfolgreich bestimmt werden. Einige Koeffizienten weichen vom Erwartungswert ab, mögliche Gründe:

- Quader wurde nicht gleichmäßig gezogen
- zu wenig Flüssigkeit um Wanne gleichmäßig zu füllen

#### Literatur und Quellen: